The partial derivative-Equation, Duality, and Holomorphic Forms on a Reduced Complex Space
Artikel i vetenskaplig tidskrift, 2021

We solve the partial derivative-equation for (p, q)-forms locally on any reduced pure-dimensional complex space and we prove an explicit version of Serre duality by introducing suitable concrete fine sheaves of certain (p, q)-currents. In particular this gives a condition for the partial derivative-equation to be globally solvable. Our results also give information about holomorphic p-forms on singular spaces.

Serre duality

Complex space

partial derivative equation

Holomorphic forms

Författare

Håkan Samuelsson

Chalmers, Matematiska vetenskaper, Algebra och geometri

Göteborgs universitet

Journal of Geometric Analysis

1050-6926 (ISSN)

Vol. 31 2 1786-1820

Ämneskategorier

Beräkningsmatematik

Geometri

Matematisk analys

DOI

10.1007/s12220-019-00325-w

Mer information

Senast uppdaterat

2021-06-01