Generating spatially entangled itinerant photons with waveguide quantum electrodynamics
Artikel i vetenskaplig tidskrift, 2020

Realizing a fully connected network of quantum processors requires the ability to distribute quantum entanglement. For distant processing nodes, this can be achieved by generating, routing, and capturing spatially entangled itinerant photons. In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide. In particular, we generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies. Using quadrature amplitude detection, we reconstruct the moments and correlations of the photonic modes and demonstrate state preparation fidelities of 84%. Our results provide a path toward realizing quantum communication and teleportation protocols using itinerant photons generated by quantum interference within a waveguide quantum electrodynamics architecture.

Författare

Bharath Kannan

Massachusetts Institute of Technology (MIT)

Daniel L. Campbell

Massachusetts Institute of Technology (MIT)

F. Vasconcelos

Massachusetts Institute of Technology (MIT)

Roni Winik

Massachusetts Institute of Technology (MIT)

D. K. Kim

MIT Lincoln Laboratory

M. Kjaergaard

Massachusetts Institute of Technology (MIT)

Philip Krantz

Massachusetts Institute of Technology (MIT)

Administration MC2

Alexander Melville

MIT Lincoln Laboratory

Bethany M. Niedzielski

MIT Lincoln Laboratory

Jonilyn L. Yoder

MIT Lincoln Laboratory

T.P. Orlando

Massachusetts Institute of Technology (MIT)

S. Gustavsson

Massachusetts Institute of Technology (MIT)

William D. Oliver

MIT Lincoln Laboratory

Massachusetts Institute of Technology (MIT)

Science advances

2375-2548 (eISSN)

Vol. 6 41 eabb8780

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Kommunikationssystem

DOI

10.1126/sciadv.abb8780

PubMed

33028523

Mer information

Senast uppdaterat

2020-11-12