Coupled Kähler-Einstein Metrics
Artikel i vetenskaplig tidskrift, 2019

We propose new types of canonical metrics on Kähler manifolds, called coupled Kähler–Einstein metrics, generalizing Kähler–Einstein metrics. We prove existence and uniqueness results in the cases when the canonical bundle is ample and when the manifold is Kähler–Einstein Fano. In the Fano case, we also prove that existence of coupled Kähler–Einstein metrics imply a certain algebraic stability condition, generalizing K-polystability.

Monge-Ampère equations

Canonical metrics

Kähler manifolds

Författare

Jakob Hultgren

Chalmers, Matematiska vetenskaper, Algebra och geometri

David Witt Nyström

Chalmers, Matematiska vetenskaper, Algebra och geometri

International Mathematics Research Notices

1073-7928 (ISSN) 1687-0247 (eISSN)

Vol. 2019 21 6765-6796 rnx298

Fundament

Grundläggande vetenskaper

Ämneskategorier (SSIF 2011)

Geometri

DOI

10.1093/imrn/rnx298

Mer information

Senast uppdaterat

2022-04-05