Reducing DNN labelling cost using surprise adequacy: An industrial case study for autonomous driving
Paper i proceeding, 2020
Deep Neural Network
Software Testing
Autonomous Driving
Författare
Jinhan Kim
Korea Advanced Institute of Science and Technology (KAIST)
Jeongil Ju
Hyundai Motor Group
Robert Feldt
Chalmers, Data- och informationsteknik, Software Engineering
Shin Yoo
Korea Advanced Institute of Science and Technology (KAIST)
ESEC/FSE 2020 - Proceedings of the 28th ACM Joint Meeting European Software Engineering Conference and Symposium on the Foundations of Software Engineering
1466-1476
Virtual, Online, USA,
Ämneskategorier
Annan data- och informationsvetenskap
Programvaruteknik
Datorsystem
DOI
10.1145/3368089.3417065