Single nucleus transcriptomics data integration recapitulates the major cell types in human liver
Artikel i vetenskaplig tidskrift, 2021

Hepatology Research published by John Wiley & Sons Australia, Ltd on behalf of Japan Society of Hepatology Aim: The aim of this study was to explore the benefits of data integration from different platforms for single nucleus transcriptomics profiling to characterize cell populations in human liver. Methods: We generated single-nucleus RNA sequencing data from Chromium 10X Genomics and Drop-seq for a human liver sample. We utilized state of the art bioinformatics tools to undertake a rigorous quality control and to integrate the data into a common space summarizing the gene expression variation from the respective platforms, while accounting for known and unknown confounding factors. Results: Analysis of single nuclei transcriptomes from both 10X and Drop-seq allowed identification of the major liver cell types, while the integrated set obtained enough statistical power to separate a small population of inactive hepatic stellate cells that was not characterized in either of the platforms. Conclusions: Integration of droplet-based single nucleus transcriptomics data enabled identification of a small cluster of inactive hepatic stellate cells that highlights the potential of our approach. We suggest single-nucleus RNA sequencing integrative approaches could be utilized to design larger and cost-effective studies.

Drop-seq

data integration

snRNA-seq

liver

10X

Författare

Klev Diamanti

Uppsala universitet

Juan Salvador Inda Diaz

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Amanda Raine

Uppsala universitet

Gang Pan

Uppsala universitet

Claes Wadelius

Uppsala universitet

Marco Cavalli

Uppsala universitet

Hepatology Research

1386-6346 (ISSN) 1872034x (eISSN)

Vol. 51 2 233-238

Ämneskategorier (SSIF 2011)

Biomedicinsk laboratorievetenskap/teknologi

Bioinformatik (beräkningsbiologi)

Bioinformatik och systembiologi

DOI

10.1111/hepr.13585

PubMed

33119937

Mer information

Senast uppdaterat

2021-03-17