Are Further Cross Section Measurements Necessary for Space Radiation Protection or Ion Therapy Applications? Helium Projectiles
Reviewartikel, 2020

The helium ((Formula presented.) He) component of the primary particles in the galactic cosmic ray spectrum makes significant contributions to the total astronaut radiation exposure. (Formula presented.) He ions are also desirable for direct applications in ion therapy. They contribute smaller projectile fragmentation than carbon ((Formula presented.) C) ions and smaller lateral beam spreading than protons. Space radiation protection and ion therapy applications need reliable nuclear reaction models and transport codes for energetic particles in matter. Neutrons and light ions ((Formula presented.) H, (Formula presented.) H, (Formula presented.) H, (Formula presented.) He, and (Formula presented.) He) are the most important secondary particles produced in space radiation and ion therapy nuclear reactions; these particles penetrate deeply and make large contributions to dose equivalent. Since neutrons and light ions may scatter at large angles, double differential cross sections are required by transport codes that propagate radiation fields through radiation shielding and human tissue. This work will review the importance of (Formula presented.) He projectiles to space radiation and ion therapy, and outline the present status of neutron and light ion production cross section measurements and modeling, with recommendations for future needs.

ion therapy cross sections

helium projectile cross section measurements

space radiation cross sections

helium projectile ion therapy

helium projectile space radiation

Författare

John W. Norbury

NASA Langley Research Center

Giuseppe Battistoni

Istituto Nazionale di Fisica Nucleare

Judith Besuglow

Deutsches Krebsforschungszentrum (DKFZ)

Universität Heidelberg

Luca Bocchini

Thales Alenia Space Italia

Daria Boscolo

Helmholtz

Alexander Botvina

Russian Academy of Sciences

Martha Clowdsley

NASA Langley Research Center

Wouter de Wet

University of New Hampshire

Marco Durante

Helmholtz

Technische Universität Darmstadt

Martina Giraudo

Thales Alenia Space Italia

Thomas Haberer

Heidelberg Ion Beam Therapy Center

Lawrence Heilbronn

University of Tennessee

Felix Horst

Helmholtz

Michael Krämer

Helmholtz

Chiara La Tessa

Universita degli Studi di Trento

Trento Institute for Fundamental Physics and Applications

Francesca Luoni

Technische Universität Darmstadt

Helmholtz

Andrea Mairani

Heidelberg Ion Beam Therapy Center

Silvia Muraro

Istituto Nazionale di Fisica Nucleare

Ryan B. Norman

NASA Langley Research Center

Vincenzo Patera

Sapienza, Università di Roma

G. Santin

Rhea System

European Space Research and Technology Centre (ESA ESTEC)

Christoph Schuy

Helmholtz

Lembit Sihver

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

Technische Universität Wien

Tony C. Slaba

NASA Langley Research Center

Nikolai Sobolevsky

Russian Academy of Sciences

Albana Topi

Helmholtz

Uli Weber

Helmholtz

Charles M. Werneth

NASA Langley Research Center

C. Zeitlin

Leidos Innovations Corporation

Frontiers in Physics

2296424X (eISSN)

Vol. 8 565954

Ämneskategorier

Acceleratorfysik och instrumentering

Subatomär fysik

Fusion, plasma och rymdfysik

DOI

10.3389/fphy.2020.565954

Mer information

Senast uppdaterat

2020-12-28