CONNECTION AND CURVATURE ON BUNDLES OF BERGMAN AND HARDY SPACES
Artikel i vetenskaplig tidskrift, 2020

We consider a complex domain D x V in the space C-m x C-n and a family of weighted Bergman spaces on V defined by a weight e(-k phi(z , w)) for a pluri-subharmonic function phi(z, w) with a quantization parameter k. The weighted Bergman spaces define an infinite dimensional Hermitian vector bundle over the domain D. We consider the natural covariant differentiation del(z) on the sections, namely the unitary Chern connections preserving the Bergman norm. We prove a Dixmier trace formula for the curvature of the unitary connection and we find the asymptotic expansion for the curvatures R-(k)(Z,Z) for large k and for the induced connection [del((k))(Z), T-f((k))] on Toeplitz operators T-f. In the special case when the domain D is the Siegel domain and the weighted Bergman spaces are the Fock spaces we find the exact formula for [del((k))(Z), T-f((k))] as Toeplitz operators. This generalizes earlier work of J.E. Andersen in Comm. Math. Phys. 255 (2005), 727-745. Finally, we also determine the formulas for the curvature and for the induced connection in the general case of D x V replaced by a general strictly pseudoconvex domain V subset of C-m x C-n fibered over a domain D subset of C-m. The case when the Bergman space is replaced by the Hardy space on the boundary of the domain is likewise discussed.

bundle of Bergman spaces

Chern connection and curvature

Siegel domain

Bergman space

Fock bundle

Fock space

Toeplitz operator

Författare

Miroslav Englis

Czech Academy of Sciences

Silesian University Opava

Genkai Zhang

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Göteborgs universitet

Documenta Mathematica

1431-0635 (ISSN) 1431-0643 (eISSN)

Vol. 25 189-217

Ämneskategorier

Algebra och logik

Geometri

Matematisk analys

Mer information

Senast uppdaterat

2021-01-07