Topology-aware continuous experimentation in microservice-based applications
Paper i proceeding, 2020

Continuous experiments, including practices such as canary releases or A/B testing, test new functionality on a small fraction of the user base in production environments. Monitoring data collected on different versions of a service is essential for decision-making on whether to continue or abort experiments. Existing approaches for decision-making rely on service-level metrics in isolation, ignoring that new functionality might introduce changes affecting other services or the overall application’s health state. Keeping track of these changes in applications comprising dozens or hundreds of services is challenging. We propose a holistic approach implemented as a research prototype to identify, visualize, and rank topological changes from distributed tracing data. We devise three ranking heuristics assessing how the changes impact the experiment’s outcome and the application’s health state. An evaluation on two case study scenarios shows that a hybrid heuristic based on structural analysis and a simple root-cause examination outperforms other heuristics in terms of ranking quality.


Gerald Schermann

Universität Zürich

Fábio Oliveira

IBM Thomas J. Watson Research Center

Erik Wittern

IBM Deutschland GmbH

Philipp Leitner

Chalmers, Data- och informationsteknik, Software Engineering, Software Engineering for Cyber Physical Systems

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

03029743 (ISSN) 16113349 (eISSN)

Vol. 12571 19-35

18th International Conference on Service-Oriented Computing, ICSOC 2020
Dubai, United Arab Emirates,


Annan data- och informationsvetenskap





Mer information

Senast uppdaterat