Stationary optomechanical entanglement between a mechanical oscillator and its measurement apparatus
Artikel i vetenskaplig tidskrift, 2020

We provide an argument to infer stationary entanglement between light and a mechanical oscillator based on continuous measurement of light only. We propose an experimentally realizable scheme involving an optomechanical cavity driven by a resonant, continuous-wave field operating in the non-sideband-resolved regime. This corresponds to the conventional configuration of an optomechanical position or force sensor. We show analytically that entanglement between the mechanical oscillator and the output field of the optomechanical cavity can be inferred from the measurement of squeezing in (generalized) Einstein-Podolski-Rosen quadratures of suitable temporal modes of the stationary light field. Squeezing can reach levels of up to 50% of noise reduction below shot noise in the limit of large quantum cooperativity. Remarkably, entanglement persists even in the opposite limit of small cooperativity. Viewing the optomechanical device as a position sensor, entanglement between mechanics and light is an instance of object-apparatus entanglement predicted by quantum measurement theory.

Författare

C. Gut

Universität Wien

Leibniz Universität Hannover

K. Winkler

Universität Wien

J. Hoelscher-Obermaier

Universität Wien

S. G. Hofer

Leibniz Universität Hannover

Universität Wien

R. Moghadas Nia

Universität Wien

N. Walk

Freie Universität Berlin

A. Steffens

Freie Universität Berlin

J. Eisert

Freie Universität Berlin

Witlef Wieczorek

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantteknologi

J. A. Slater

TU Delft

Universität Wien

M. Aspelmeyer

Universität Wien

Österreichische Akademie der Wissenschaften

K. Hammerer

Leibniz Universität Hannover

PHYSICAL REVIEW RESEARCH

2643-1564 (eISSN)

Vol. 2 3 033244

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Annan elektroteknik och elektronik

DOI

10.1103/PhysRevResearch.2.033244

Mer information

Senast uppdaterat

2021-01-21