Non-vanishing of maass form L-functions at the central point
Artikel i vetenskaplig tidskrift, 2021

In this paper, we consider the family {Lj(s)}∞j=1 of L-functions associated to an orthonormal basis {uj}∞j=1 of even Hecke-Maass forms for the modular group SL(2,Z) with eigenvalues {λj = κ2j + 1/4}∞j=1. We prove the following effective non-vanishing result: At least 50% of the central values Lj(1/2) with κj ≤ T do not vanish as T → ∞. Furthermore, we establish effective non-vanishing results in short intervals.

Maass cusp forms

L-functions

Non-vanishing

Mollification

Författare

Olga Balkanova

Russian Academy of Sciences

Bingrong Huang

Shandong University

Anders Södergren

Chalmers, Matematiska vetenskaper, Algebra och geometri

Göteborgs universitet

Proceedings of the American Mathematical Society

0002-9939 (ISSN) 1088-6826 (eISSN)

Vol. 149 2 509-523

Ämneskategorier

Algebra och logik

Diskret matematik

Matematisk analys

DOI

10.1090/proc/15208

Mer information

Senast uppdaterat

2021-02-11