Structural Transition with a Sharp Change in the Electrical Resistivity and Spin-Orbit Mott Insulating State in a Rhenium Oxide, Sr3Re2O9
Artikel i vetenskaplig tidskrift, 2021

We report the successful synthesis, crystal structure, and electrical properties of Sr3Re2O9, which contains Re6+ with the 5d1 configuration. This compound is isostructural with Ba3Re2O9 and shows a first-order structural phase transition at ∼370 K. The low-temperature (LT) phase crystallizes in a hettotype structure of Ba3Re2O9, which is different from that of the LT phase of Sr3W2O9, suggesting that the electronic state of Re6+ plays an important role in determining the crystal structure of the LT phase. The structural transition is accompanied by a sharp change in the electrical resistivity. This is likely a metal-insulator transition, as suggested by the electronic band calculation and magnetic susceptibility. In the LT phase, the ReO6 octahedra are rotated in a pseudo-a0a0a+ manner in Glazer notation, which corresponds to C-type orbital ordering. Paramagnetic dipole moments were confirmed to exist in the LT phase by muon spin rotation and relaxation measurements. However, the dipole moments shrink greatly because of the strong spin-orbit coupling in the Re ions. Thus, the electronic state of the LT phase corresponds to a Mott insulating state with strong spin-orbit interactions at the Re sites.

Författare

Daisuke Urushihara

Nagoya Institute of Technology

Toru Asaka

Nagoya Institute of Technology

Koichiro Fukuda

Nagoya Institute of Technology

Masanobu Nakayama

Kyoto University

Nagoya Institute of Technology

National Institute for Materials Science (NIMS)

Yuki Nakahira

Hiroshima University

Chikako Moriyoshi

Hiroshima University

Yoshihiro Kuroiwa

Hiroshima University

Ola Kenji Forslund

Kungliga Tekniska Högskolan (KTH)

Nami Matsubara

Kungliga Tekniska Högskolan (KTH)

Martin Månsson

Kungliga Tekniska Högskolan (KTH)

Konstantinos Papadopoulos

Chalmers, Fysik, Materialfysik

Yasmine Sassa

Chalmers, Fysik, Materialfysik

Kazuki Ohishi

Comprehensive Research Organization for Science and Society (CROSS)

Jun Sugiyama

Comprehensive Research Organization for Science and Society (CROSS)

Yoshitaka Matsushita

National Institute for Materials Science (NIMS)

Hiroya Sakurai

National Institute for Materials Science (NIMS)

Inorganic Chemistry

0020-1669 (ISSN) 1520-510X (eISSN)

Vol. 60 2 507-514

Ämneskategorier

Oorganisk kemi

Materialkemi

Den kondenserade materiens fysik

DOI

10.1021/acs.inorgchem.0c02750

PubMed

33395280

Mer information

Senast uppdaterat

2024-03-04