Fast and Accurate Nanoparticle Characterization Using Deep-Learning-Enhanced Off-Axis Holography
Artikel i vetenskaplig tidskrift, 2021
polystyrene particles without prior knowledge of solute viscosity or refractive index. We further demonstrate how these features make it possible to temporally resolve aggregation dynamics of 31 nm polystyrene nanoparticles, revealing previously unobserved time-resolved dynamics of the monomer number and fractal dimension of individual subwavelength aggregates.
aggregation kinetics
optical microscopy
particle characterization
holography
deep learning
Författare
Benjamin Midtvedt
Göteborgs universitet
Erik Olsén
Chalmers, Fysik, Nano- och biofysik
Fredrik Eklund
Chalmers, Fysik, Nano- och biofysik
Fredrik Höök
Chalmers, Fysik, Nano- och biofysik
Caroline Adiels
Göteborgs universitet
Giovanni Volpe
Göteborgs universitet
Daniel Midtvedt
Göteborgs universitet
ACS Nano
1936-0851 (ISSN) 1936-086X (eISSN)
Vol. 15 2 2240-2250Ämneskategorier
Biofysik
Den kondenserade materiens fysik
Infrastruktur
Chalmers materialanalyslaboratorium
DOI
10.1021/acsnano.0c06902
PubMed
33399450