Photoisomerization Efficiency of a Solar Thermal Fuel in the Strong Coupling Regime
Artikel i vetenskaplig tidskrift, 2021

Strong exciton-photon coupling is achieved when the interaction between molecules and an electromagnetic field is increased to a level where they cannot be treated as separate systems. This leads to the formation of polaritonic states and an effective rearrangement of the potential energy surfaces, which opens the possibility to modify photochemical reactions. This work investigates how the strong coupling regime is affecting the photoisomerization efficiency and thermal backconversion of a norbornadiene–quadricyclane molecular photoswitch. The quantum yield of photoisomerization shows both an excitation wavelength and exciton/photon constitution dependence. The polariton-induced decay and energy transfer processes are discussed to be the reason for this finding. Furthermore, the thermal back conversion of the system is unperturbed and the lower polariton effectively shifts the absorption onset to lower energies. The reason for the unperturbed thermal backconversion is that it occurs on the ground state, which is unaffected. This work demonstrates how strong coupling can change material properties towards higher efficiencies in applications. Importantly, the experiments illustrate that strong coupling can be used to optimize the absorption onset of the molecular photoswitch norbonadiene without affecting the back reaction from the uncoupled quadricyclane.

energy storage

solar fuels

polaritonic chemistry

potential energy surfaces

strong coupling

photoisomerization quantum yields

photoswitches

Författare

Jürgen Mony

Göteborgs universitet

Clàudia Climent

Universidad Autonoma de Madrid (UAM)

Anne Petersen

Chalmers, Kemi och kemiteknik, Tillämpad kemi, Kasper Moth-Poulsen Group

Kasper Moth-Poulsen

Chalmers, Kemi och kemiteknik, Tillämpad kemi, Kasper Moth-Poulsen Group

Johannes Feist

Universidad Autonoma de Madrid (UAM)

Karl Börjesson

Göteborgs universitet

Advanced Functional Materials

1616-301X (ISSN)

Vol. In Press

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Teoretisk kemi

DOI

10.1002/adfm.202010737

Mer information

Senast uppdaterat

2021-04-01