Electronic reconstruction forming a C-2-symmetric Dirac semimetal in Ca3Ru2O7
Artikel i vetenskaplig tidskrift, 2021

Electronic band structures in solids stem from a periodic potential reflecting the structure of either the crystal lattice or electronic order. In the stoichiometric ruthenate Ca3Ru2O7, numerous Fermi surface-sensitive probes indicate a low-temperature electronic reconstruction. Yet, the causality and the reconstructed band structure remain unsolved. Here, we show by angle-resolved photoemission spectroscopy, how in Ca3Ru2O7 a C-2-symmetric massive Dirac semimetal is realized through a Brillouin-zone preserving electronic reconstruction. This Dirac semimetal emerges in a two-stage transition upon cooling. The Dirac point and band velocities are consistent with constraints set by quantum oscillation, thermodynamic, and transport experiments, suggesting that the complete Fermi surface is resolved. The reconstructed structure-incompatible with translational-symmetry-breaking density waves-serves as an important test for band structure calculations of correlated electron systems.

Författare

M. Horio

Universität Zürich

Q. Wang

Universität Zürich

V Granata

Universita degli Studi di Salerno

Consiglio Nazionale delle Ricerche (CNR)

K. P. Kramer

Universität Zürich

Yasmine Sassa

Chalmers, Fysik, Materialfysik

S. Johr

Universität Zürich

D. Sutter

Universität Zürich

A. Bold

Universität Zürich

L. Das

Universität Zürich

Y. Xu

Universität Zürich

R. Frison

Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa)

R. Fittipaldi

Consiglio Nazionale delle Ricerche (CNR)

Universita degli Studi di Salerno

T. K. Kim

Diamond Light Source

C. Cacho

Diamond Light Source

J. E. Rault

SOLEIL Synchrotron

P. Le Fevre

SOLEIL Synchrotron

F. Bertran

SOLEIL Synchrotron

N. C. Plumb

Paul Scherrer Institut

M. Shi

Paul Scherrer Institut

A. Vecchione

Universita degli Studi di Salerno

Consiglio Nazionale delle Ricerche (CNR)

M. H. Fischer

Universität Zürich

J. Chang

Universität Zürich

npj Quantum Materials

23974648 (eISSN)

Vol. 6 1 29

Framtidens Lågdimensionella Skyrmion Material

Vetenskapsrådet (VR) (2017-05078), 2019-06-01 -- 2021-12-31.

Ämneskategorier

Oorganisk kemi

Annan fysik

Den kondenserade materiens fysik

Styrkeområden

Materialvetenskap

DOI

10.1038/s41535-021-00328-3

Mer information

Senast uppdaterat

2024-01-03