Proximity control of interlayer exciton-phonon hybridization in van der Waals heterostructures
Artikel i vetenskaplig tidskrift, 2021

Van der Waals stacking has provided unprecedented flexibility in shaping many-body interactions by controlling electronic quantum confinement and orbital overlap. Theory has predicted that also electron-phonon coupling critically influences the quantum ground state of low-dimensional systems. Here we introduce proximity-controlled strong-coupling between Coulomb correlations and lattice dynamics in neighbouring van der Waals materials, creating new electrically neutral hybrid eigenmodes. Specifically, we explore how the internal orbital 1s-2p transition of Coulomb-bound electron-hole pairs in monolayer tungsten diselenide resonantly hybridizes with lattice vibrations of a polar capping layer of gypsum, giving rise to exciton-phonon mixed eigenmodes, called excitonic Lyman polarons. Tuning orbital exciton resonances across the vibrational resonances, we observe distinct anticrossing and polarons with adjustable exciton and phonon compositions. Such proximity-induced hybridization can be further controlled by quantum designing the spatial wavefunction overlap of excitons and phonons, providing a promising new strategy to engineer novel ground states of two-dimensional systems. Here, the authors demonstrate proximity-controlled strong-coupling between Coulomb correlations and lattice dynamics in neighbouring van der Waals materials (WSe2 and a gypsum layer), creating electrically neutral hybrid exciton-phonon eigenmodes called excitonic Lyman polarons.

Författare

Philipp Merkl

Universität Regensburg

Chaw-Keong Yong

Universität Regensburg

Marlene Liebich

Universität Regensburg

Isabella Hofmeister

Universität Regensburg

Gunnar Berghäuser

Philipps-Universität Marburg

Chalmers, Fysik, Kondenserade materiens teori

Ermin Malic

Philipps-Universität Marburg

Chalmers, Fysik, Kondenserad materie- och materialteori

Rupert Huber

Universität Regensburg

Nature Communications

2041-1723 (ISSN)

Vol. 12 1 1719

Graphene Core Project 3 (Graphene Flagship)

Europeiska kommissionen (EU), 2020-04-01 -- 2023-03-31.

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Den kondenserade materiens fysik

DOI

10.1038/s41467-021-21780-6

PubMed

33741906

Mer information

Senast uppdaterat

2021-04-09