Modeling femtosecond laser-induced electron dynamics in dielectrics by means of optical bloch equations
Paper i proceeding, 2019

Modern laser technologies provide high-intensity single- or few-cycle laser pulses which open new doors to study laser-matter interaction processes. To predict new routes towards their active control, advanced theoretical and numerical models are required. When approaching the highly non-linear interaction regimes close to the material damage threshold, the traditional perturbation expansion of the polarization response is not valid anymore and a quantum-mechanical modeling is essential [1-4]. A good candidate to model the electron dynamics within this framework is the Optical Bloch Equations (OBEs) approach, which provides all-order material response within a single self-consistent description. We develop a new OBEs-based model of laser matter-interaction including field-induced ionization, both linear and nonlinear polarization responses leading to high harmonics, impact ionization and various relaxation processes taking place in dielectric materials. Here, we apply our model to describe the electron dynamics induced by an intense femtosecond laser pulse in a dielectric.

solids

Harmonic generation

Carrier-envelope phase

Författare

E. Smetanina

Göteborgs universitet

Université de Bordeaux

P. Gonzalez De Alaiza Martinez

Université de Bordeaux

Illia Thiele

Université de Bordeaux

Chalmers, Fysik, Subatomär fysik och plasmafysik

B. Chimier

Université de Bordeaux

Antoine Bourgeade

Université de Bordeaux

G. Duchateau

Université de Bordeaux

2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019

8873202
978-172810469-0 (ISBN)

2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
Munich, Germany,

Ämneskategorier (SSIF 2011)

Teknisk mekanik

Atom- och molekylfysik och optik

Annan fysik

DOI

10.1109/CLEOE-EQEC.2019.8873202

ISBN

9781557528209

Mer information

Senast uppdaterat

2021-04-27