Epitaxial Pb on InAs nanowires for quantum devices
Artikel i vetenskaplig tidskrift, 2021

Semiconductor-superconductor hybrids are used for realizing complex quantum phenomena but are limited in the accessible magnetic field and temperature range. Now, hybrid devices made from InAs nanowires and epitaxially matched, single-crystal, atomically flat Pb films present superior characteristics, doubling the available parameter space. Semiconductor-superconductor hybrids are widely used to realize complex quantum phenomena, such as topological superconductivity and spins coupled to Cooper pairs. Accessing new, exotic regimes at high magnetic fields and increasing operating temperatures beyond the state-of-the-art requires new, epitaxially matched semiconductor-superconductor materials. One challenge is the generation of favourable conditions for heterostructural formation between materials with the desired properties. Here we harness an increased knowledge of metal-on-semiconductor growth to develop InAs nanowires with epitaxially matched, single-crystal, atomically flat Pb films with no axial grain boundaries. These highly ordered heterostructures have a critical temperature of 7 K and a superconducting gap of 1.25 meV, which remains hard at 8.5 T, and therefore they offer a parameter space more than twice as large as those of alternative semiconductor-superconductor hybrids. Additionally, InAs/Pb island devices exhibit magnetic field-driven transitions from a Cooper pair to single-electron charging, a prerequisite for use in topological quantum computation. Semiconductor-Pb hybrids potentially enable access to entirely new regimes for a number of different quantum systems.

Författare

Thomas Kanne

Köpenhamns universitet

Mikelis Marnauza

Köpenhamns universitet

Dags Olsteins

Köpenhamns universitet

Damon J. Carrad

Köpenhamns universitet

Joachim E. Sestoft

Köpenhamns universitet

Joeri de Bruijckere

Köpenhamns universitet

TU Delft

Lunjie Zeng

Chalmers, Fysik, Nano- och biofysik

Erik Johnson

Köpenhamns universitet

Eva Olsson

Chalmers, Fysik, Nano- och biofysik

Kasper Grove-Rasmussen

Köpenhamns universitet

Jesper Nygard

Köpenhamns universitet

Nature Nanotechnology

1748-3387 (ISSN) 1748-3395 (eISSN)

Vol. 16 7 776-781

Ämneskategorier

Oorganisk kemi

Annan fysik

Den kondenserade materiens fysik

Styrkeområden

Nanovetenskap och nanoteknik

Infrastruktur

Chalmers materialanalyslaboratorium

DOI

10.1038/s41565-021-00900-9

PubMed

33972757

Mer information

Senast uppdaterat

2023-04-11