Critical slowing down in circuit quantum electrodynamics
Artikel i vetenskaplig tidskrift, 2021

Critical slowing down of the time it takes a system to reach equilibrium is a key signature of bistability in dissipative first-order phase transitions. Understanding and characterizing this process can shed light on the underlying many-body dynamics that occur close to such a transition. Here, we explore the rich quantum activation dynamics and the appearance of critical slowing down in an engineered superconducting quantum circuit. Specifically, we investigate the intermediate bistable regime of the generalized Jaynes-Cummings Hamiltonian (GJC), realized by a circuit quantum electrodynamics (cQED) system consisting of a transmon qubit coupled to a microwave cavity. We find a previously unidentified regime of quantum activation in which the critical slowing down reaches saturation and, by comparing our experimental results with a range of models, we shed light on the fundamental role played by the qubit in this regime.


Paul Brookes

University College London (UCL)

Giovanna Tancredi

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantteknologi

University of Oxford

Andrew D. Patterson

University of Oxford

Joseph Rahamim

University of Oxford

Martina Esposito

University of Oxford

Themistoklis K. Mavrogordatos

Stockholms universitet

Peter J. Leek

University of Oxford

E. Ginossar

University of Surrey

Marzena H. Szymanska

University College London (UCL)

Science advances

2375-2548 (eISSN)

Vol. 7 21 eabe9492


Atom- och molekylfysik och optik

Annan fysik

Den kondenserade materiens fysik



Mer information

Senast uppdaterat