Origin of the quasi-quantized Hall effect in ZrTe5
Artikel i vetenskaplig tidskrift, 2021

The quantum Hall effect (QHE) is traditionally considered to be a purely two-dimensional (2D) phenomenon. Recently, however, a three-dimensional (3D) version of the QHE was reported in the Dirac semimetal ZrTe . It was proposed to arise from a magnetic-field-driven Fermi surface instability, transforming the original 3D electron system into a stack of 2D sheets. Here, we report thermodynamic, spectroscopic, thermoelectric and charge transport measurements on such ZrTe samples. The measured properties: magnetization, ultrasound propagation, scanning tunneling spectroscopy, and Raman spectroscopy, show no signatures of a Fermi surface instability, consistent with in-field single crystal X-ray diffraction. Instead, a direct comparison of the experimental data with linear response calculations based on an effective 3D Dirac Hamiltonian suggests that the quasi-quantization of the observed Hall response emerges from the interplay of the intrinsic properties of the ZrTe electronic structure and its Dirac-type semi-metallic character.

Författare

S. Galeski

Max-Planck-Gesellschaft

T. Ehmcke

Technische Universität Dresden

R. Wawrzyńczak

Max-Planck-Gesellschaft

P. M. Lozano

Brookhaven National Laboratory

K. Cho

Max-Planck-Gesellschaft

A. Sharma

Max-Planck-Gesellschaft

S. Das

Max-Planck-Gesellschaft

F. Küster

Max-Planck-Gesellschaft

P. Sessi

Max-Planck-Gesellschaft

M. Brando

Max-Planck-Gesellschaft

R. Küchler

Max-Planck-Gesellschaft

A. Markou

Max-Planck-Gesellschaft

M. König

Max-Planck-Gesellschaft

P. Swekis

Max-Planck-Gesellschaft

C. Felser

Max-Planck-Gesellschaft

Yasmine Sassa

Chalmers, Fysik, Materialfysik

Q. Li

Brookhaven National Laboratory

G. Gu

Brookhaven National Laboratory

M. V. Zimmermann

Deutsches Elektronen-Synchrotron (DESY)

O. Ivashko

Deutsches Elektronen-Synchrotron (DESY)

D. I. Gorbunov

Helmholtz

S. Zherlitsyn

Helmholtz

T. Förster

Helmholtz

S. S.P. Parkin

Max-Planck-Gesellschaft

J. Wosnitza

Helmholtz

Technische Universität Dresden

T. Meng

Technische Universität Dresden

J. Gooth

Max-Planck-Gesellschaft

Technische Universität Dresden

Nature Communications

2041-1723 (ISSN) 20411723 (eISSN)

Vol. 12 1 3197

Ämneskategorier

Oorganisk kemi

Materialkemi

Den kondenserade materiens fysik

DOI

10.1038/s41467-021-23435-y

PubMed

34045452

Mer information

Senast uppdaterat

2021-06-14