ON THE MAGNITUDE FUNCTION OF DOMAINS IN EUCLIDEAN SPACE
Artikel i vetenskaplig tidskrift, 2021

We study Leinster's notion of magnitude for a compact metric space. For a smooth, compact domain X subset of R2m-1, we find geometric significance in the function M-X(R) = mag(R . X). The function M-X extends from the positive half-line to a meromorphic function in the complex plane. Its poles are generalized scattering resonances. In the semiclassical limit R -> infinity, M-X admits an asymptotic expansion. The three leading terms of M-X at R = +infinity are proportional to the volume, surface area and integral of the mean curvature. In particular, for convex X the leading terms are proportional to the intrinsic volumes, and we obtain an asymptotic variant of the convex magnitude conjecture by Leinster and Willerton, with corrected coefficients.

Författare

Heiko Gimperlein

Universität Paderborn

Heriot-Watt University

Magnus C H T Goffeng

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

American Journal of Mathematics

0002-9327 (ISSN) 1080-6377 (eISSN)

Vol. 143 3 939-967

Ämneskategorier

Geometri

Matematisk analys

DOI

10.1353/ajm.2021.0023

Mer information

Senast uppdaterat

2021-07-05