Multiscale Chirping Modes Driven by Thermal Ions in a Plasma with Reactor-Relevant Ion Temperature
Artikel i vetenskaplig tidskrift, 2021

A thermal ion driven bursting instability with rapid frequency chirping, considered as an Alfvenic ion temperature gradient mode, has been observed in plasmas having reactor-relevant temperature in the DIII-D tokamak. The modes are excited over a wide spatial range from macroscopic device size to microturbulence size and the perturbation energy propagates across multiple spatial scales. The radial mode structure is able to expand from local to global in similar to 0.1 ms and it causes magnetic topology changes in the plasma edge, which can lead to a minor disruption event. Since the mode is typically observed in the high ion temperature greater than or similar to 10 keV and high-beta plasma regime, the manifestation of the mode in future reactors should be studied with development of mitigation strategies, if needed. This is the first observation of destabilization of the Alfven continuum caused by the compressibility of ions with reactor-relevant ion temperature.
Visa alla personer

Publicerad i

Physical Review Letters

0031-9007 (ISSN) 1079-7114 (eISSN)

Vol. 127 Nummer/häfte 2 art. nr 025001

Kategorisering

Ämneskategorier (SSIF 2011)

Annan fysik

Fusion, plasma och rymdfysik

Den kondenserade materiens fysik

Identifikatorer

DOI

10.1103/PhysRevLett.127.025001

Mer information

Senast uppdaterat

2021-08-16