Genuinely sharp heat kernel estimates on compact rank-one symmetric spaces, for Jacobi expansions, on a ball and on a simplex
Artikel i vetenskaplig tidskrift, 2021

We prove genuinely sharp two-sided global estimates for heat kernels on all compact rank-one symmetric spaces. This generalizes the authors' recent result obtained for a Euclidean sphere of arbitrary dimension. Furthermore, similar heat kernel bounds are shown in the context of classical Jacobi expansions, on a ball and on a simplex. These results are more precise than the qualitatively sharp Gaussian estimates proved recently by several authors.

Primary 35K08

42C10

Secondary 58J35

Författare

Adam Nowak

Polish Academy of Sciences

Peter Sjögren

Göteborgs universitet

Chalmers, Matematiska vetenskaper

Tomasz Szarek

Uniwersytet Wrocławski

Rutgers University

Mathematische Annalen

0025-5831 (ISSN) 1432-1807 (eISSN)

Vol. 381 3-4 1455-1476

Fundament

Grundläggande vetenskaper

Ämneskategorier

Matematisk analys

DOI

10.1007/s00208-021-02185-8

Mer information

Senast uppdaterat

2022-04-05