Generation of Driving Scenario Trajectories with Generative Adversarial Networks
Paper i proceeding, 2020

The future of transportation is tightly connected to Autonomous Driving (AD). While a lot of progress has been made in recent years, there are still obstacles to overcome. One of the most critical issues is the safety verification of AD. A scenario-based verification approach that shifts tests from the fields to a virtual environment seems like a sophisticated approach to tackle the safety verification as tests need to be revised whenever changes are made to the AD. However, collecting and labelling data that can be used to construct scenarios is expensive and time-consuming to compute. In this work, we propose a unified framework for trajectory generation and validation in a consistent and principled way. We first explore methods to generate artificial trajectories that resemble the previously captured ones. More specifically, we consider two architectures based on Generative Adversarial Networks (GANs): recurrent GANs and a recurrent Autoencoder in combination with GANs. Moreover, we investigate the use of different metrics to evaluate the quality of generated trajectories which is a nontrivial task.

Författare

Andreas Demetriou

Student vid Chalmers

Henrik Allsvåg

Student vid Chalmers

Sadegh Rahrovani

Volvo Cars

Morteza Haghir Chehreghani

Chalmers, Data- och informationsteknik, Data Science

2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020

9294362
9781728141497 (ISBN)

23rd IEEE International Conference on Intelligent Transportation Systems, ITSC 2020
Rhodes, Greece,

Ämneskategorier

Inbäddad systemteknik

Robotteknik och automation

Datorsystem

DOI

10.1109/ITSC45102.2020.9294362

Mer information

Senast uppdaterat

2021-09-27