On the Impact of Prior Experiences in Car-Following Models: Model Development, Computational Efficiency, Comparative Analyses, and Extensive Applications
Artikel i vetenskaplig tidskrift, 2023

A major shortcoming of the conventional car-following models is that these models only consider the current spacing and speeds of the target vehicle and its immediate leading vehicle, without taking into account prior driving actions, even for those from the same driver. In other words, the numerous prior experiences have no influence in predicting vehicular movements for the next time step. In this research, we propose a machine-learning-based data-driven methodology that is able to take advantage of the high-resolution historical traffic data in the current data-rich era, to predict vehicular movements in an accurate manner with high computational efficiency. The proposed car-following model has a simple model structure based on a fixed-radius near neighbors (FRNN) search algorithm and it can be applied to high-resolution, real-time vehicle movement prediction, modeling, and control. A comprehensive performance comparison is also conducted among the proposed car-following model, another similar data-driven model, and two conventional formula-based models. The results indicate that the FRNN algorithm-based car-following model is superior to all other three models in terms of prediction accuracy and is more computationally efficient compared to its data-driven-based counterpart. Some extensive applications of the proposed car-following model are also discussed at the end of this article.

fixed-radius near neighbors (FRNN) algorithm

Real-time systems

Predictive models

Computational modeling

Training

Computational efficiency

Data models

Prediction algorithms

Analytical models

historical traffic data

data-driven car-following model

trajectory prediction

Författare

Yang Yu

University of Technology Sydney

Zhengbing He

Beijing University of Technology

Xiaobo Qu

Chalmers, Arkitektur och samhällsbyggnadsteknik, Geologi och geoteknik

IEEE Transactions on Cybernetics

2168-2267 (ISSN) 21682275 (eISSN)

Vol. 53 3 1405-1418

Ämneskategorier

Transportteknik och logistik

Bioinformatik (beräkningsbiologi)

Farkostteknik

DOI

10.1109/TCYB.2021.3095154

PubMed

34520382

Mer information

Senast uppdaterat

2023-03-15