Towards the prediction of molecular parameters from astronomical emission lines using Neural Networks
Artikel i vetenskaplig tidskrift, 2021
MADCUBA
Molecular parameters
Neural networks
Machine learning
Molecular astronomy
ALCHEMI
Författare
Alejandro Barrientos
Universidad Técnica Federico Santa María
Atacama Large Millimeter-submillimeter Array (ALMA)
Jonathan Holdship
Universiteit Leiden
University College London (UCL)
Mauricio Solar
Universidad Técnica Federico Santa María
S. Martin
Universidad Técnica Federico Santa María
European Southern Observatory Santiago
Víctor M. Rivilla
Centro de Astrobiologia (CAB)
Osservatorio Astrofisico di Arcetri
Serena Viti
University College London (UCL)
Universiteit Leiden
J. G. Mangum
National Radio Astronomy Observatory
N. Harada
National Astronomical Observatory of Japan
The Graduate University for Advanced Studies (SOKENDAI)
Academia Sinica
K. Sakamoto
Academia Sinica
Sebastien Muller
Chalmers, Rymd-, geo- och miljövetenskap, Onsala rymdobservatorium
Kunihiko Tanaka
Keio University
Yuki Yoshimura
University of Tokyo
Kouichiro Nakanishi
National Astronomical Observatory of Japan
The Graduate University for Advanced Studies (SOKENDAI)
R. Herrero-Illana
Consejo Superior de Investigaciones Científicas (CSIC)
European Southern Observatory Santiago
S. Muhle
Universität Bonn
Rebeca Aladro
Max-Planck-Gesellschaft
Susanne Aalto
Chalmers, Rymd-, geo- och miljövetenskap, Astronomi och plasmafysik
C. Henkel
Max-Planck-Gesellschaft
King Abdulaziz University
Pedro Humire
Max-Planck-Gesellschaft
Experimental Astronomy
0922-6435 (ISSN) 1572-9508 (eISSN)
Vol. 52 1-2 157-182Ämneskategorier (SSIF 2011)
Datorteknik
Bioinformatik (beräkningsbiologi)
Signalbehandling
DOI
10.1007/s10686-021-09786-w