Photon upconverting bioplastics with high efficiency and in-air durability
Artikel i vetenskaplig tidskrift, 2021

There is an urgent demand for substituting synthetic plastics to bioplastics for sustainable renewable energy production. Here, we report a simple one-step approach to create bioplastics with efficient and durable photon upconversion (UC) by encapsulating non-volatile chromophore solutions into collagen-based protein films. By just drying an aqueous solution of gelatin, surfactant, and UC chromophores (sensitizer and annihilator), liquid surfactant microdroplets containing the UC chromophores are spontaneously confined within the gelatin films. Thanks to the high fluidity of microdroplets and the good oxygen barrier ability of the collagen-based fiber matrices, a high absolute TTA-UC efficiency of 15.6% and low threshold excitation intensity of 14.0 mW cm−2are obtained even in air. The TTA-UC efficiency was retained up to 8.2% after 2 years of storage under ambient conditions, hence displaying the significant durability desired for practical applications.
Visa alla personer

Publicerad i

Journal of Materials Chemistry C

20507526 (ISSN) 20507534 (eISSN)

Vol. 9 Nummer/häfte 35 s. 11655-11661

Kategorisering

Ämneskategorier (SSIF 2011)

Fysikalisk kemi

Identifikatorer

DOI

10.1039/d1tc00287b

Mer information

Senast uppdaterat

2021-10-13