Modeling glioblastoma heterogeneity as a dynamic network of cell states
Artikel i vetenskaplig tidskrift, 2021

Tumor cell heterogeneity is a crucial characteristic of malignant brain tumors and underpins phenomena such as therapy resistance and tumor recurrence. Advances in single-cell analysis have enabled the delineation of distinct cellular states of brain tumor cells, but the time-dependent changes in such states remain poorly understood. Here, we construct quantitative models of the time-dependent transcriptional variation of patient-derived glioblastoma (GBM) cells. We build the models by sampling and profiling barcoded GBM cells and their progeny over the course of 3 weeks and by fitting a mathematical model to estimate changes in GBM cell states and their growth rates. Our model suggests a hierarchical yet plastic organization of GBM, where the rates and patterns of cell state switching are partly patient-specific. Therapeutic interventions produce complex dynamic effects, including inhibition of specific states and altered differentiation. Our method provides a general strategy to uncover time-dependent changes in cancer cells and offers a way to evaluate and predict how therapy affects cell state composition.

cell state

patient-derived brain tumor cells

single-cell lineage tracing

time-dependent computational models

cellular barcoding

Författare

Ida Larsson

Uppsala universitet

Erika Dalmo

Uppsala universitet

Ramy Elgendy

Uppsala universitet

Mia Niklasson

Uppsala universitet

Milena Doroszko

Uppsala universitet

Anna Segerman

Uppsala universitet

Akademiska Sjukhuset

Rebecka Jörnsten

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Bengt Westermark

Uppsala universitet

S. Nelander

Uppsala universitet

Molecular Systems Biology

17444292 (eISSN)

Vol. 17 9 e10105

Ämneskategorier

Cellbiologi

Cell- och molekylärbiologi

Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)

DOI

10.15252/msb.202010105

PubMed

34528760

Mer information

Senast uppdaterat

2021-10-06