Modeling the spatial characteristics of extrusion flow instabilities for styrene-butadiene rubbers: Investigating the influence of molecular weight distribution, molecular architecture, and temperature
Artikel i vetenskaplig tidskrift, 2021

The extrusion flow instabilities of three commercial styrene-butadiene rubbers (SBR) are investigated as a function of molecular weight distribution (MWD); molecular architecture (linear, branched); and temperature. The samples have multimodal MWD, with the main component being SBR and a low amount, less than 10 wt. %, of low-molecular weight hydrocarbons. Deviation from the Cox-Merz rule at high angular frequencies/shear rates becomes intense as the amount of medium-molecular weight component increases. Optical analysis is used to identify and quantify spatial surface distortions, specifically wavelength (λ) and height (h), of the different types of extrusion flow instabilities. Qualitative constitutive models are reviewed and used to fit the experimental data for the spatial characteristics of extrusion flow instability. The fitting parameters as obtained by the models are correlated with molecular properties of the materials. It is found that the characteristic spatial wavelength (λ) increases as the extrusion temperature decreases. Hence, the influence of temperature on the spatial characteristic wavelength is investigated and an Arrhenius behavior is observed.

Författare

Christos K. Georgantopoulos

Karlsruher Institut für Technologie (KIT)

Masood K. Esfahani

Karlsruher Institut für Technologie (KIT)

Carlo Botha

Karlsruher Institut für Technologie (KIT)

Michael A. Pollard

Karlsruher Institut für Technologie (KIT)

Ingo F. C. Naue

Karlsruher Institut für Technologie (KIT)

Andrea Causa

Pirelli & C. S.p.A.

Roland Kádár

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

Manfred Wilhelm

Karlsruher Institut für Technologie (KIT)

Physics of Fluids

0031-9171 (ISSN)

Vol. 33 9 093108

Ämneskategorier

Textil-, gummi- och polymermaterial

Strömningsmekanik och akustik

Den kondenserade materiens fysik

DOI

10.1063/5.0061334

Mer information

Senast uppdaterat

2021-10-11