The fractal cylinder process: Existence and connectivity phase transitions
Artikel i vetenskaplig tidskrift, 2021

We consider a semi-scale invariant version of the Poisson cylinder model which in a natural way induces a random fractal set.We show that this random fractal exhibits an existence phase transition for any dimension d 2, and a connectivity phase transition whenever d 4. We determine the exact value of the critical point of the existence phase transition, and we show that the fractal set is almost surely empty at this critical point. A key ingredient when analysing the connectivity phase transition is to consider a restriction of the full process onto a subspace. We show that this restriction results in a fractal ellipsoid model which we describe in detail, as it is key to obtaining our main results. In addition we also determine the almost sure Hausdorff dimension of the fractal set.

Fractal percolation

Poisson cylinder model

Random fractals

Författare

Erik Broman

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Olof Elias

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Filipe Mussini

Uppsala universitet

Johan Tykesson

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Annals of Applied Probability

1050-5164 (ISSN)

Vol. 31 5 2192-2243

Ämneskategorier

Fysikalisk kemi

Annan fysik

Sannolikhetsteori och statistik

DOI

10.1214/20-AAP1644

Mer information

Senast uppdaterat

2021-11-18