The Minimum Principle for Convex Subequations
Artikel i vetenskaplig tidskrift, 2022

A subequation, in the sense of Harvey–Lawson, on an open subset X⊂ Rn is a subset F of the space of 2-jets on X with certain properties. A smooth function is said to be F-subharmonic if all of its 2-jets lie in F, and using the viscosity technique one can extend the notion of F-subharmonicity to any upper-semicontinuous function. Let P denote the subequation consisting of those 2-jets whose Hessian part is semipositive. We introduce a notion of product subequation F# P on X× Rm and prove, under suitable hypotheses, that if F is convex and f(x, y) is F# P-subharmonic then the marginal function g(x):=infyf(x,y)is F-subharmonic. This generalises the classical statement that the marginal function of a convex function is again convex. We also prove a complex version of this result that generalises the Kiselman minimum principle for the marginal function of a plurisubharmonic function.

Pluripotential theory

Minimum principle

Several complex variables

Viscosity solutions

Författare

Julius Ross

University of Illinois

David Witt Nyström

Chalmers, Matematiska vetenskaper, Algebra och geometri

Journal of Geometric Analysis

1050-6926 (ISSN)

Vol. 32 1 28

Ämneskategorier

Algebra och logik

Geometri

Matematisk analys

DOI

10.1007/s12220-021-00782-2

Mer information

Senast uppdaterat

2021-12-20