The Role of Terahertz and Far-IR Spectroscopy in Understanding the Formation and Evolution of Interstellar Prebiotic Molecules
Reviewartikel, 2021

Stellar systems are often formed through the collapse of dense molecular clouds which, in turn, return copious amounts of atomic and molecular material to the interstellar medium. An in-depth understanding of chemical evolution during this cyclic interaction between the stars and the interstellar medium is at the heart of astrochemistry. Systematic chemical composition changes as interstellar clouds evolve from the diffuse stage to dense, quiescent molecular clouds to star-forming regions and proto-planetary disks further enrich the molecular diversity leading to the evolution of ever more complex molecules. In particular, the icy mantles formed on interstellar dust grains and their irradiation are thought to be the origin of many of the observed molecules, including those that are deemed to be “prebiotic”; that is those molecules necessary for the origin of life. This review will discuss both observational (e.g., ALMA, SOFIA, Herschel) and laboratory investigations using terahertz and far-IR (THz/F-IR) spectroscopy, as well as centimeter and millimeter spectroscopies, and the role that they play in contributing to our understanding of the formation of prebiotic molecules. Mid-IR spectroscopy has typically been the primary tool used in laboratory studies, particularly those concerned with interstellar ice analogues. However, THz/F-IR spectroscopy offers an additional and complementary approach in that it provides the ability to investigate intermolecular interactions compared to the intramolecular modes available in the mid-IR. THz/F-IR spectroscopy is still somewhat under-utilized, but with the additional capability it brings, its popularity is likely to significantly increase in the near future. This review will discuss the strengths and limitations of such methods, and will also provide some suggestions on future research areas that should be pursued in the coming decade exploiting both space-borne and laboratory facilities.


far-IR spectroscopy


terahertz spectroscopy

prebiotic chemistry

interstellar chemistry


Duncan V. Mifsud

University Of Kent

Magyar Tudomanyos Akademia

Perry A. Hailey

University Of Kent

Alejandra Traspas Muiña

Queen Mary University of London

Olivier Auriacombe

Chalmers, Mikroteknologi och nanovetenskap, Mikrovågselektronik

Nigel J. Mason

University Of Kent

Sergio Ioppolo

Queen Mary University of London

Frontiers in Astronomy and Space Sciences

2296987X (eISSN)

Vol. 8 757619


Astronomi, astrofysik och kosmologi



Mer information

Senast uppdaterat