Multiple Model Poisson Multi-Bernoulli Mixture for 5G Mapping
Paper i proceeding, 2020

In this paper, we evaluate and compare the multiple model Poisson multi-Bernoulli mixture (MM-PMBM) and the multiple model probability hypothesis density (MM-PHD) filters for mapping a propagation environment, specified by multiple types objects, using 5G millimeter-wave signals. To develop the MM-PMBM applicable to 5G scenarios, we design the density representation, data structure, and implementation strategy. From the simulation results, it is demonstrated that the MM-PMBM captures the objects and is robust to both missed detections and false alarm compared to the MM-PHD.

Författare

Hyowon Kim

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Henk Wymeersch

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Sunwoo Kim

Hanyang University

2020 Summer Conference of the Korean Institute of Communication Society

2020 Summer Conference of the Korean Institute of Communication Society
, South Korea,

Ämneskategorier

Annan data- och informationsvetenskap

Signalbehandling

Datorseende och robotik (autonoma system)

Styrkeområden

Informations- och kommunikationsteknik

Mer information

Senast uppdaterat

2022-02-03