A Continuous Model for Designing Corridor Systems with Modular Autonomous Vehicles Enabling Station-wise Docking
Artikel i vetenskaplig tidskrift, 2022
The "asymmetry" between spatiotemporally varying passenger demand and fixed-capacity transportation supply has been a long-standing problem in urban mass transportation (UMT) systems around the world. The emerging modular autonomous vehicle (MAV) technology offers us an opportunity to close the substantial gap between passenger demand and vehicle capacity through station-wise docking and undocking operations. However, there still lacks an appropriate approach that can solve the operational design problem for UMT corridor systems with MAVs efficiently. To bridge this methodological gap, this paper proposes a continuum approximation (CA) model that can offer near-optimal solutions to the operational design for MAV-based transit corridors very efficiently. We investigate the theoretical properties of the optimal solutions to the investigated problem in a certain (yet not uncommon) case. These theoretical properties allow us to estimate the seat demand of each time neighborhood with the arrival demand curves, which recover the "local impact" property of the investigated problem. With the property, a CA model is properly formulated to decompose the original problem into a finite number of subproblems that can be analytically solved. A discretization heuristic is then proposed to convert the analytical solution from the CA model to feasible solutions to the original problem. With two sets of numerical experiments, we show that the proposed CA model can achieve near-optimal solutions (with gaps less than 4% for most cases) to the investigated problem in almost no time (less than 10 ms) for large-scale instances with a wide range of parameter settings (a commercial solver may even not obtain a feasible solution in several hours). The theoretical properties are verified, and managerial insights regarding how input parameters affect system performance are provided through these numerical results. Additionally, results also reveal that, although the CA model does not incorporate vehicle repositioning decisions, the timetabling decisions obtained by solving the CA model can be easily applied to obtain near-optimal repositioning decisions (with gaps less than 5% in most instances) very efficiently (within 10 ms). Thus, the proposed CA model provides a foundation for developing solution approaches for other problems (e.g., MAV repositioning) with more complex system operation constraints whose exact optimal solution can hardly be found with discrete modeling methods.
continuum approximation
operational design
transportation corridors
station-wise docking
modular autonomous vehicles