Anoxia-responsive regulation of the FoxO transcription factors in freshwater turtles, Trachemys scripta elegans
Artikel i vetenskaplig tidskrift, 2013
Background The forkhead class O (FoxO) transcription factors are important regulators of multiple aspects of cellular metabolism. We hypothesized that activation of these transcription factors could play crucial roles in low oxygen survival in the anoxia-tolerant turtle, Trachemys scripta elegans. Methods Two FoxOs, FoxO1 and FoxO3, were examined in turtle tissues in response to 5 and 20 h of anoxic submergence using techniques of RT-PCR, western immunoblotting and DNA-binding assays to assess activation. Transcript levels of FoxO-responsive genes were also quantified using RT-PCR. Results FoxO1 was anoxia-responsive in the liver, with increases in transcript levels, protein levels, nuclear levels and DNA-binding of 1.7-4.8 fold in response to anoxia. Levels of phosphorylated FoxO1 also decreased to 57% of control values in response to 5 h of anoxia, indicating activation. FoxO3 was activated in the heart, kidney and liver in response to anoxia, with nuclear levels increasing by 1.5-3.7 fold and DNA-binding activity increasing by 1.3-2.9 fold. Transcript levels of two FoxO-target genes, p27kip1 and catalase, also rose by 2.4-2.5 fold in the turtle liver under anoxia. Conclusions The results suggest that the FoxO transcription factors are activated in response to anoxia in T. scripta elegans, potentially contributing to the regulation of stress resistance and metabolic depression. General significance This study provides the first demonstration of activation of FoxOs in a natural model for vertebrate anoxia tolerance, further improving understanding of how tissues can survive without oxygen. © 2013 Elsevier B.V.
Catalase
p27kip1
Anoxia
Metabolic depression
Red-eared slider
Forkhead box O