Sub-arcsecond imaging with the International LOFAR Telescope: I. Foundational calibration strategy and pipeline
Artikel i vetenskaplig tidskrift, 2022

The International LOFAR Telescope is an interferometer with stations spread across Europe. With baselines of up to ∼2000 km, LOFAR has the unique capability of achieving sub-arcsecond resolution at frequencies below 200 MHz. However, it is technically and logistically challenging to process LOFAR data at this resolution. To date only a handful of publications have exploited this capability. Here we present a calibration strategy that builds on previous high-resolution work with LOFAR. It is implemented in a pipeline using mostly dedicated LOFAR software tools and the same processing framework as the LOFAR Two-metre Sky Survey (LoTSS). We give an overview of the calibration strategy and discuss the special challenges inherent to enacting high-resolution imaging with LOFAR, and describe the pipeline, which is publicly available, in detail. We demonstrate the calibration strategy by using the pipeline on P205+55, a typical LoTSS pointing with an 8 h observation and 13 international stations. We perform in-field delay calibration, solution referencing to other calibrators in the field, self-calibration of these calibrators, and imaging of example directions of interest in the field. We find that for this specific field and these ionospheric conditions, dispersive delay solutions can be transferred between calibrators up to ∼1.5° away, while phase solution transferral works well over ∼1°. We also demonstrate a check of the astrometry and flux density scale with the in-field delay calibrator source. Imaging in 17 directions, we find the restoring beam is typically ∼0.3″ ×0.2″ although this varies slightly over the entire 5 deg2 field of view. We find we can achieve ∼80-300 μJy bm-1 image rms noise, which is dependent on the distance from the phase centre; typical values are ∼90 μJy bm-1 for the 8 h observation with 48 MHz of bandwidth. Seventy percent of processed sources are detected, and from this we estimate that we should be able to image roughly 900 sources per LoTSS pointing. This equates to ∼ 3 million sources in the northern sky, which LoTSS will entirely cover in the next several years. Future optimisation of the calibration strategy for efficient post-processing of LoTSS at high resolution makes this estimate a lower limit.

Techniques: high angular resolution

Radiation mechanisms: non-thermal

Galaxies: active

Galaxies: jets

Författare

L. Morabito

Durham University

N. J. Jackson

University of Manchester

S. Mooney

University College Dublin

F. Sweijen

Universiteit Leiden

S. Badole

University of Manchester

P. Kukreti

Netherlands Institute for Radio Astronomy (ASTRON)

Rijksuniversiteit Groningen

D. Venkattu

Alba Nova Universitetscentrum

C. Groeneveld

Universiteit Leiden

A. Kappes

Julius-Maximilians Universität Würzburg

E. Bonnassieux

Universita di Bologna

A. Drabent

Thüringer Landessternwarte Tautenburg

M. Iacobelli

Netherlands Institute for Radio Astronomy (ASTRON)

J. H. Croston

Open University

P. N. Best

University of Edinburgh

M. Bondi

Istituto di Radioastronomia

J. R. Callingham

Netherlands Institute for Radio Astronomy (ASTRON)

Universiteit Leiden

John Conway

Chalmers, Rymd-, geo- och miljövetenskap, Onsala rymdobservatorium

A. Deller

Swinburne University of Technology

M. J. Hardcastle

University of Hertfordshire

J. McKean

Rijksuniversiteit Groningen

Netherlands Institute for Radio Astronomy (ASTRON)

G. K. Miley

Universiteit Leiden

J. Moldon

Consejo Superior de Investigaciones Científicas (CSIC)

H. J.A. Röttgering

Universiteit Leiden

C. Tasse

Rhodes University

Observatoire de Paris-Meudon

T. W. Shimwell

Netherlands Institute for Radio Astronomy (ASTRON)

Universiteit Leiden

R. van Weeren

Universiteit Leiden

J. M. Anderson

Deutsches GeoForschungsZentrum (GFZ)

Technische Universität Berlin

A. Asgekar

Shell Technology Center

Netherlands Institute for Radio Astronomy (ASTRON)

I.M. Avruch

Sci & Technol BV

Netherlands Institute for Radio Astronomy (ASTRON)

I. van Bemmel

Joint Institute for VLBI in Europe (JIVE)

M. J. Bentum

Netherlands Institute for Radio Astronomy (ASTRON)

Technische Universiteit Eindhoven

A. Bonafede

Universita di Bologna

Universität Hamburg

Istituto di Radioastronomia

W. N. Brouw

Rijksuniversiteit Groningen

H. R. Butcher

Australian National University

B. Ciardi

Max-Planck-Gesellschaft

A. Corstanje

Radboud Universiteit

Vrije Universiteit Brüssel (VUB)

A. H.W.M. Coolen

Netherlands Institute for Radio Astronomy (ASTRON)

Sieds Damstra

Netherlands Institute for Radio Astronomy (ASTRON)

F. De Gasperin

Istituto di Radioastronomia

Universität Hamburg

S. Duscha

Netherlands Institute for Radio Astronomy (ASTRON)

J. Eisloffel

Thüringer Landessternwarte Tautenburg

D. Engels

Universität Hamburg

H.D. Falcke

Radboud Universiteit

M. A. Garrett

Universiteit Leiden

University of Manchester

J.M. Grießmeier

Universite d'Orleans

Station de Radioastronomie de Nançay

A.W. Gunst

Netherlands Institute for Radio Astronomy (ASTRON)

M. P. van Haarlem

Netherlands Institute for Radio Astronomy (ASTRON)

M. Hoeft

Thüringer Landessternwarte Tautenburg

A. J. van der Horst

George Washington University

E. Jutte

Ruhr-Universität Bochum

M. Kadler

Julius-Maximilians Universität Würzburg

L.V.E. Koopmans

Rijksuniversiteit Groningen

A. Krankowski

University of Warmia and Mazury in Olsztyn

G. Mann

Leibniz-Institut Für Astrophysik Potsdam

A. Nelles

Friedrich-Alexander-Universität Erlangen Nurnberg (FAU)

Deutsches Elektronen-Synchrotron (DESY)

J. B. R. Oonk

Surfsara Bv

E. Orrú

Netherlands Institute for Radio Astronomy (ASTRON)

H. Paas

Rijksuniversiteit Groningen

V. N. Pandey

Netherlands Institute for Radio Astronomy (ASTRON)

R. Pizzo

Netherlands Institute for Radio Astronomy (ASTRON)

M. Pandey-Pommier

Université de Lyon

W. Reich

Max-Planck-Gesellschaft

Hanna Rothkaehl

Polish Academy of Sciences

Mark Ruiter

Netherlands Institute for Radio Astronomy (ASTRON)

D. J. Schwarz

Universität Bielefeld

A. Shulevski

Universiteit Leiden

Universiteit Van Amsterdam

M. Soida

Uniwersytet Jagiellonski w Krakowie

M. Tagger

Universite d'Orleans

C. Vocks

Leibniz-Institut Für Astrophysik Potsdam

Ramj Wijers

Universiteit Van Amsterdam

S. J. Wijnholds

Netherlands Institute for Radio Astronomy (ASTRON)

O. Wucknitz

Max-Planck-Gesellschaft

P.M. Zarka

Station de Radioastronomie de Nançay

LESIA - Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique

P. Zucca

Netherlands Institute for Radio Astronomy (ASTRON)

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 658 A1

Ämneskategorier (SSIF 2011)

Annan fysik

Signalbehandling

Datorseende och robotik (autonoma system)

DOI

10.1051/0004-6361/202140649

Mer information

Senast uppdaterat

2025-03-09