A Numerical Multiscale Method for Fiber Networks
Paper i proceeding, 2021

Fiber network modeling can be used for studying mechanical properties of paper. The individual fibers and the bonds in-between constitute a detailed representation of the material. However, detailed microscale fiber network models must be resolved with efficient numerical methods. In this work, a numerical multiscale method for discrete network models is proposed that is based on the localized orthogonal decomposition method. The method is ideal for these network problems, because it reduces the maximum size of the problem, it is suitable for parallelization, and it can effectively solve fracture propagation.

The problem analyzed in this work is the nodal displacement of a fiber network given an applied load. This problem is formulated as a linear system that is solved by using the aforementioned multiscale method. To solve the linear system, the multiscale method constructs a low-dimensional solution space with good approximation properties. The method is observed to work well for unstructured fiber networks, with optimal rates of convergence obtainable for highly localized configurations of the method.

Fiber network model

Multiscale method

Mechanical properties

Författare

Morgan Görtz

Stiftelsen Fraunhofer-Chalmers Centrum för Industrimatematik

Gustav Kettil

Stiftelsen Fraunhofer-Chalmers Centrum för Industrimatematik

Axel Målqvist

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Andreas Mark

Stiftelsen Fraunhofer-Chalmers Centrum för Industrimatematik

Fredrik Edelvik

Stiftelsen Fraunhofer-Chalmers Centrum för Industrimatematik

14th WCCM-ECCOMAS Congress 2020

14th WCCM-ECCOMAS Congress
Virtual, ,

Ämneskategorier

Teknisk mekanik

Beräkningsmatematik

DOI

10.23967/wccm-eccomas.2020.031

Mer information

Skapat

2022-03-31