Surface finite element approximation of spherical Whittle-Matérn Gaussian random fields
Artikel i vetenskaplig tidskrift, 2022

Spherical Matérn-Whittle Gaussian random fields are considered as solutions to fractional elliptic stochastic partial differential equations on the sphere. Approximation is done with surface finite elements. While the non-fractional part of the operator is solved by a recursive scheme, a quadrature of the Dunford-Taylor integral representation is employed for the fractional part. Strong error analysis is performed, obtaining polynomial convergence in the white noise approximation, exponential convergence in the quadrature, and quadratic convergence in the mesh width of the discretization of the sphere. Numerical experiments for different choices of parameters confirm the theoretical findings.

Stochastic partial differential equations

Strong convergence

Sphere

Parametric finite element methods

Surface finite element method

Gaussian random fields

Fractional operators

Författare

Erik Jansson

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Mihaly Kovacs

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Annika Lang

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

SIAM Journal of Scientific Computing

1064-8275 (ISSN) 1095-7197 (eISSN)

Vol. 44 2 A825-A842

Icke-lokala deterministiska och stokastiska differentialekvationer: analys och numerik

Vetenskapsrådet (VR) (2017-04274), 2019-01-01 -- 2021-12-31.

Stochastic Continuous-Depth Neural Networks

Chalmers AI-forskningscentrum (CHAIR), 2020-08-15 -- .

Efficienta approximeringsmetoder för stokastiska fält på mångfalder

Vetenskapsrådet (VR) (2020-04170), 2021-01-01 -- 2024-12-31.

Ämneskategorier

Beräkningsmatematik

Sannolikhetsteori och statistik

Matematisk analys

Fundament

Grundläggande vetenskaper

DOI

10.1137/21M1400717

Mer information

Senast uppdaterat

2022-07-04