Intelligent ship anti-rolling control system based on a deep deterministic policy gradient algorithm and the Magnus effect
Artikel i vetenskaplig tidskrift, 2022
Anti-rolling devices are widely used in modern shipboard components. In particular, ship anti-rolling control systems are developed to achieve a wide range of ship speeds and efficient anti-rolling capabilities. However, factors that are challenging to solve accurately, such as strong nonlinearities, a complex working environment, and hydrodynamic system parameters, limit the investigation of the rolling motion of ships at sea. Moreover, current anti-rolling control systems still face several challenges, such as poor nonlinear adaptability and manual parameter adjustment. In this regard, this study developed a dynamic model for a ship anti-rolling system. In addition, based on deep reinforcement learning (DRL), an efficient anti-rolling controller was developed using a deep deterministic policy gradient (DDPG) algorithm. Finally, the developed system was applied to a ship anti-rolling device based on the Magnus effect. The advantages of reinforcement learning adaptive control enable controlling an anti-rolling system under various wave angles, ship speeds, and wavelengths. The results revealed that the anti-rolling efficiency of the intelligent ship anti-rolling control method using the DDPG algorithm surpassed 95% and had fast convergence. This study lays the foundation for developing a DRL anti-rolling controller for full-scale ships.