Homogeneous vector bundles and G-equivariant convolutional neural networks
Artikel i vetenskaplig tidskrift, 2022

G-equivariant convolutional neural networks (GCNNs) is a geometric deep learning model for data defined on a homogeneous G-space M. GCNNs are designed to respect the global symmetry in M, thereby facilitating learning. In this paper, we analyze GCNNs on homogeneous spaces M= G/ K in the case of unimodular Lie groups G and compact subgroups K≤ G. We demonstrate that homogeneous vector bundles are the natural setting for GCNNs. We also use reproducing kernel Hilbert spaces (RKHS) to obtain a sufficient criterion for expressing G-equivariant layers as convolutional layers. Finally, stronger results are obtained for some groups via a connection between RKHS and bandwidth.

Convolutional neural networks

Fiber bundles

Geometry

Symmetry

Equivariance

Deep learning

Författare

Jimmy Aronsson

Chalmers, Matematiska vetenskaper, Algebra och geometri

Göteborgs universitet

Sampling Theory, Signal Processing, and Data Analysis

27305716 (ISSN) 27305724 (eISSN)

Vol. 20 2 10

Ämneskategorier

Algebra och logik

Geometri

Matematisk analys

DOI

10.1007/s43670-022-00029-3

Mer information

Senast uppdaterat

2022-07-26