A space-time multiscale method for parabolic problems
Artikel i vetenskaplig tidskrift, 2022

We present a space-time multiscale method for a parabolic model problem with an underlying coefficient that may be highly oscillatory with respect to both the spatial and the temporal variables. The method is based on the framework of the Variational Multiscale Method in the context of a space-time formulation and computes a coarse-scale representation of the differential operator that is enriched by auxiliary space-time corrector functions. Once computed, the coarse-scale representation allows us to efficiently obtain well-approximating discrete solutions for multiple right-hand sides. We prove first-order convergence independently of the oscillation scales in the coefficient and illustrate how the space-time correctors decay exponentially in both space and time, making it possible to localize the corresponding computations. This localization allows us to define a practical and computationally efficient method in terms of complexity and memory, for which we provide a posteriori error estimates and present numerical examples.

numerical homogenization

multiscale method

space-time method

parabolic problem

Författare

Per Ljung

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Roland Maier

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Axel Målqvist

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Multiscale Modeling and Simulation

1540-3459 (ISSN) 15403467 (eISSN)

Vol. 20 2 714-740

Ämneskategorier

Beräkningsmatematik

DOI

10.1137/21M1446605

Mer information

Senast uppdaterat

2022-08-15