Ecosystem Models Based on Artificial Intelligence
Paper i proceeding, 2022

Ecosystem models can be used for understanding general phenomena of evolution, ecology, and ethology. They can also be used for analyzing and predicting the ecological consequences of human activities on specific ecosystems, e.g., the effects of agriculture, forestry, construction, hunting, and fishing. We argue that powerful ecosystem models need to include reasonable models of the physical environment and of animal behavior. We also argue that several well-known ecosystem models are unsatisfactory in this regard. Then we present the open-source ecosystem simulator Ecotwin, which is built on top of the game engine Unity. To model a specific ecosystem in Ecotwin, we first generate a 3D Unity model of the physical environment, based on topographic or bathymetric data. Then we insert digital 3D models of the organisms of interest into the environment model. Each organism is equipped with a genome and capable of sexual or asexual reproduction. An organism dies if it runs out of some vital resource or reaches its maximum age. The animal models are equipped with behavioral models that include sensors, actions, reward signals, and mechanisms of learning and decision-making. Finally, we illustrate how Ecotwin works by building and running one terrestrial and one marine ecosystem model.

Författare

Claes Strannegård

Göteborgs universitet

Chalmers, Data- och informationsteknik, Data Science och AI

Karolinska Institutet

Niklas Engsner

Karolinska Institutet

Chalmers, Data- och informationsteknik, Data Science

Jesper Eisfeldt

Karolinska Institutet

John Endler

Deakin University

Amanda Hansson

Göteborgs universitet

Rasmus Lindgren

Student vid Chalmers

Petter Mostad

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

Simon Olsson

Chalmers, Data- och informationsteknik, Data Science och AI

Irene Perini

Linköpings universitet

Center for Medical Image Science and Visualization

Heather Reese

Göteborgs universitet

Fulya Taylan

Karolinska Institutet

Simon Ulfsbäcker

Göteborgs universitet

Ann Nordgren

Karolinska Institutet

Göteborgs universitet

34th Workshop of the Swedish Artificial Intelligence Society, SAIS 2022


9781665471268 (ISBN)

34th Workshop of the Swedish Artificial Intelligence Society, SAIS 2022
Stockholm, Sweden,

Ämneskategorier

Bioinformatik (beräkningsbiologi)

Systemvetenskap

Datavetenskap (datalogi)

DOI

10.1109/SAIS55783.2022.9833026

Mer information

Senast uppdaterat

2022-09-08