Potential Use of Data-Driven Models to Estimate and Predict Soybean Yields at National Scale in Brazil
Artikel i vetenskaplig tidskrift, 2022
Machine learning approaches
Public databases
Large-scale analysis
Geospatial and temporal variability
Climatic and soil variables
Författare
Leonardo A. Monteiro
School of Agricultural Engineering (FEAGRI)
Food and Agriculture Organization of the United Nations
University of Kentucky
Rafael M. Ramos
UNIEURO University Center
Rafael Battisti
Universidade Federal de Goias
Johnny R. Soares
School of Agricultural Engineering (FEAGRI)
Julianne de Castro Oliveira
Chalmers, Teknikens ekonomi och organisation, Environmental Systems Analysis
Gleyce K.D.A. Figueiredo
School of Agricultural Engineering (FEAGRI)
Rubens A.C. Lamparelli
Center of Energy Planning (NIPE)
Claas Nendel
Czech Academy of Sciences
Universität Potsdam
Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF)
Marcos Alberto Lana
Sveriges lantbruksuniversitet (SLU)
International Journal of Plant Production
1735-6814 (ISSN) 17358043 (eISSN)
Vol. 16 4 691-703Ämneskategorier (SSIF 2011)
Annan data- och informationsvetenskap
Bioinformatik (beräkningsbiologi)
Naturgeografi
DOI
10.1007/s42106-022-00209-0