Kinetic discretization of one-dimensional nonlocal flow models
Paper i proceeding, 2022

We show that one-dimensional nonlocal flow models in PDE form with Lighthill-Whitham-Richards flux supplemented with appropriate in- and out-flow terms can be spatially discretized with a finite volume scheme to obtain formally kinetic models with physically meaningful reaction graph structure. This allows the utilization of the theory of chemical reaction networks, as demonstrated here via the stability analysis of a flow model with circular topology. We further propose an explicit time discretization and a Courant-Friedrichs-Lewy condition ensuring many advantageous properties of the scheme. Additional characteristics, including monotonicity and the total variation diminishing property are also discussed. Copyright (C) 2022 The Authors.

stability of distributed parameter systems

modeling for control

kinetic modeling

stability of nonlinear systems

control of hyperbolic systems and conservation laws

Författare

Mihaly A. Vaghy

Pázmány Péter Katolikus Egyetem

Mihaly Kovacs

Göteborgs universitet

Gabor Szederkenyi

Magyar Tudomanyos Akademia

Pázmány Péter Katolikus Egyetem

IFAC-PapersOnLine

2405-8963 (ISSN) 24058963 (eISSN)

Vol. 55 20 67-72

Ämneskategorier (SSIF 2011)

Beräkningsmatematik

Annan fysik

Strömningsmekanik och akustik

DOI

10.1016/j.ifacol.2022.09.073

Mer information

Senast uppdaterat

2023-10-25