De Novo Drug Design Using Reinforcement Learning with Graph- Based Deep Generative Models
Artikel i vetenskaplig tidskrift, 2022

Machine learning provides effective computational tools for exploring the chemical space via deep generative models. Here, we propose a new reinforcement learning scheme to finetune graph-based deep generative models for de novo molecular design tasks. We show how our computational framework can successfully guide a pretrained generative model toward the generation of molecules with a specific property profile, even when such molecules are not present in the training set and unlikely to be generated by the pretrained model. We explored the following tasks: generating molecules of decreasing/increasing size, increasing drug-likeness, and increasing bioactivity. Using the proposed approach, we achieve a model which generates diverse compounds with predicted DRD2 activity for 95% of sampled molecules, outperforming previously reported methods on this metric.

Författare

Sara Romeo Atance

AstraZeneca AB

Student vid Chalmers

Juan Viguera Diez

Chalmers, Data- och informationsteknik, Data Science och AI

Ola Engkvist

Chalmers, Data- och informationsteknik

Simon Olsson

Chalmers, Data- och informationsteknik, Data Science och AI

Rocio Mercado

AstraZeneca R&D

Journal of Chemical Information and Modeling

1549-9596 (ISSN) 1549960x (eISSN)

Vol. 62 20 4863-4872

Ämneskategorier (SSIF 2011)

Bioinformatik (beräkningsbiologi)

Datavetenskap (datalogi)

Datorsystem

DOI

10.1021/acs.jcim.2c00838

PubMed

36219571

Mer information

Senast uppdaterat

2024-03-07