Efficient Optimization of Dominant Set Clustering with Frank-Wolfe Algorithms
Paper i proceeding, 2022

We study Frank-Wolfe algorithms - standard, pairwise, and away-steps - for efficient optimization of Dominant Set Clustering. We present a unified and computationally efficient framework to employ the different variants of Frank-Wolfe methods, and we investigate its effectiveness via several experimental studies. In addition, we provide explicit convergence rates for the algorithms in terms of the so-called Frank-Wolfe gap. The theoretical analysis has been specialized to Dominant Set Clustering and covers consistently the different variants.

frank-wolfe optimization

replicator dynamics

dominant set

clustering

Författare

Carl Johnell

Student vid Chalmers

Morteza Haghir Chehreghani

Chalmers, Data- och informationsteknik, Data Science och AI

International Conference on Information and Knowledge Management, Proceedings

915-924
9781450392365 (ISBN)

31st ACM International Conference on Information and Knowledge Management, CIKM 2022
Atlanta, USA,

Ämneskategorier

Beräkningsmatematik

Reglerteknik

Signalbehandling

DOI

10.1145/3511808.3557306

Mer information

Senast uppdaterat

2023-10-26