A Coq formalization of finitely presented modules
Paper i proceeding, 2014

This paper presents a formalization of constructive module theory in the intuitionistic type theory of Coq. We build an abstraction layer on top of matrix encodings, in order to represent finitely presented modules, and obtain clean definitions with short proofs justifying that it forms an abelian category. The goal is to use it as a first step to get certified programs for computing topological invariants, like homology groups and Betti numbers.

SSReflect

Homological algebra

Constructive algebra

Formalization of mathematics

Coq

Författare

Cyril Cohen

Chalmers, Data- och informationsteknik, Datavetenskap

Anders C O Mörtberg

Chalmers, Data- och informationsteknik, Datavetenskap

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

03029743 (ISSN) 16113349 (eISSN)

Vol. 8558 LNCS 193-208
9783319089690 (ISBN)

5th International Conference on Interactive Theorem Proving, ITP 2014 - Held as Part of the Vienna Summer of Logic, VSL 2014
, Austria,

Ämneskategorier (SSIF 2011)

Algebra och logik

Geometri

Matematisk analys

DOI

10.1007/978-3-319-08970-6_13

Mer information

Senast uppdaterat

2022-11-23