State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage–capacity model
Artikel i vetenskaplig tidskrift, 2020

State of health (SOH) is critical to evaluate the life expectancy of lithium-ion battery (LIB), thus should be estimated accurately in practical applications. This article proposes a computationally efficient model-based method for SOH estimation of LIB. A revised Lorentzian function-based voltage-capacity (VC) (RL-VC) model is exploited to accurately capture the voltage plateaus of LIB which reflect the material-level phase transition phenomenon. A full set of new features of interest (FOIs) is extracted by simply fitting the RL-VC model leveraging data collected from the constant-current charging process. Correlation analysis is then performed for the captured FOIs, based on which linear models are calibrated to estimate the battery SOH. The proposed method is validated with experimental data from different battery chemistries. The results show that the extracted FOIs have high linearities with the battery capacity, suggesting a good potential for SOH estimation and better feasibility over traditionally used methods. The proposed method shows a high accuracy for battery SOH estimation and an expected robust performance against the initial aging status and practical cycling condition.


Jiangtao He

McMaster University

Zhongbao Wei

Beijing Institute of Technology

Xiaolei Bian

Kungliga Tekniska Högskolan (KTH)

Fengjun Yan

McMaster University

IEEE Transactions on Transportation Electrification

2332-7782 (eISSN)

Vol. 6 2 417-426


Teknisk mekanik

Annan kemiteknik

Bioinformatik (beräkningsbiologi)



Mer information

Senast uppdaterat