On non-centered maximal operators related to a non-doubling and non-radial exponential measure
Artikel i vetenskaplig tidskrift, 2024

We investigate mapping properties of non-centered Hardy–Littlewood maximal operators related to the exponential measure dμ(x) = exp (- | x1| - ⋯ - | xd|) dx in Rd. The mean values are taken over Euclidean balls or cubes (ℓ∞ balls) or diamonds (ℓ1 balls). Assuming that d≥ 2 , in the cases of cubes and diamonds we prove the Lp-boundedness for p> 1 and disprove the weak type (1, 1) estimate. The same is proved in the case of Euclidean balls, under the restriction d≤ 4 for the positive part.

Författare

Adam Nowak

Polish Academy of Sciences

Emanuela Sasso

Università degli Studi di Genova

Peter Sjögren

Chalmers, Matematiska vetenskaper

Göteborgs universitet

Krzysztof Stempak

Uniwersytet Wrocławski

Mathematische Annalen

0025-5831 (ISSN) 1432-1807 (eISSN)

Vol. 388 3 2887-2929

Ämneskategorier

Algebra och logik

Sannolikhetsteori och statistik

Matematisk analys

DOI

10.1007/s00208-023-02595-w

Mer information

Senast uppdaterat

2024-03-07