THE GLOBAL GLIMM PROPERTY
Artikel i vetenskaplig tidskrift, 2023

It is known that a C*-algebra with the Global Glimm Property is nowhere scattered (it has no elementary ideal-quotients), and the Global Glimm Problem asks if the converse holds. We provide a new approach to this long-standing problem by showing that a C*-algebra has the Global Glimm Property if and only if it is nowhere scattered and its Cuntz semigroup is ideal -filtered (the Cuntz classes generating a given ideal are downward directed) and has property (V) (a weak form of being sup-semilattice ordered). We show that ideal-filteredness and property (V) are automatic for C*- algebras that have stable rank one or real rank zero, thereby recovering the solutions to the Global Glimm Problem in these cases. We also use our approach to solve the Global Glimm Problem for new classes of C*-algebras.

Författare

Hannes Thiel

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Göteborgs universitet

Eduard Vilalta

Universitat Autonoma de Barcelona (UAB)

Transactions of the American Mathematical Society

0002-9947 (ISSN) 1088-6850 (eISSN)

Vol. In Press

Ämneskategorier

Algebra och logik

Beräkningsmatematik

Matematisk analys

DOI

10.1090/tran/8880

Mer information

Senast uppdaterat

2023-03-30