Electrical control of hybrid exciton transport in a van der Waals heterostructure
Artikel i vetenskaplig tidskrift, 2023

Interactions between out-of-plane dipoles in bosonic gases enable the long-range propagation of excitons. The lack of direct control over collective dipolar properties has so far limited the degrees of tunability and the microscopic understanding of exciton transport. In this work we modulate the layer hybridization and interplay between many-body interactions of excitons in a van der Waals heterostructure with an applied vertical electric field. By performing spatiotemporally resolved measurements supported by microscopic theory, we uncover the dipole-dependent properties and transport of excitons with different degrees of hybridization. Moreover, we find constant emission quantum yields of the transporting species as a function of excitation power with radiative decay mechanisms dominating over nonradiative ones, a fundamental requirement for efficient excitonic devices. Our findings provide a complete picture of the many-body effects in the transport of dilute exciton gases, and have crucial implications for studying emerging states of matter such as Bose–Einstein condensation and optoelectronic applications based on exciton propagation.

Författare

Fedele Tagarelli

Ecole Polytechnique Federale de Lausanne (EPFL)

Edoardo Lopriore

Ecole Polytechnique Federale de Lausanne (EPFL)

Daniel Erkensten

Chalmers, Fysik, Kondenserad materie- och materialteori

Raul Perea Causin

Chalmers, Fysik, Kondenserad materie- och materialteori

Samuel Brem

Philipps-Universität Marburg

Chalmers, Fysik, Kondenserad materie- och materialteori

Joakim Hagel

Chalmers, Fysik, Kondenserad materie- och materialteori

Zhe Sun

Ecole Polytechnique Federale de Lausanne (EPFL)

Gabriele Pasquale

Ecole Polytechnique Federale de Lausanne (EPFL)

Kenji Watanabe

National Institute for Materials Science (NIMS)

Takashi Taniguchi

National Institute for Materials Science (NIMS)

Ermin Malic

Philipps-Universität Marburg

Chalmers, Fysik, Kondenserad materie- och materialteori

A. Kis

Ecole Polytechnique Federale de Lausanne (EPFL)

Nature Photonics

1749-4885 (ISSN) 17494893 (eISSN)

Vol. 17 7 615-621

Graphene Core Project 3 (Graphene Flagship)

Europeiska kommissionen (EU) (EC/H2020/881603), 2020-04-01 -- 2023-03-31.

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Den kondenserade materiens fysik

DOI

10.1038/s41566-023-01198-w

Mer information

Senast uppdaterat

2024-03-07